If sinAsinB=p,cosAcosB=q, then prove that - tanA=±pq√(1−q2p2−1),tanB=±√(1−q2p2−1)
Open in App
Solution
let tan=At1,tanB=t2 Dividing the given relation tanAtanB=pqort1p=t2q=K , say ....(1) multiplying the given relation, sin2Asin2B=pq or 2t11+t21⋅1+t222t2=pq Now put for t1 and t2 from (1) and find K and hence t1=±pq√(1−q2p2−1),t2=±√(1−q2p2−1)