sinxsiny=12, cosxcosy=32
⇒tanxtany=13 ...(1)
Now,
tan(x+y)=tanx+tany1−tanxtany
From equation (1), we get
=4tanx1−3tan2x
Also,
siny=2sinx, cosy=23cosx
⇒sin2y+cos2y=1⇒4sin2x+49cos2x=1⇒36sin2x+4cos2x=9⇒36tan2x+4=9sec2x⇒36tan2x+4=9(1+tan2x)⇒27tan2x=5⇒tanx=√53√3 (∵x∈(0,π/2))∴tan(x+y)=4√53√31−1527=√15⇒k=√15∴[k]=3