If sin2(A+B)+sin2Bsin2A=2, then tan(A+B) is equal to
sin2(A+B)+sin2Bsin2A=2⇒2sin(A+2B)cosA2sinAcosA=2 ⇒sin(A+2B)sinA=2 Hence sin(A+2B)+sinAsin(A+2B)−sinA=3 ⇒2sin(A+B)cosB2cos(A+B)sinB=3⇒tan (A+B)=3tanB