wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tan3AtanA=k, then prove that sin3AsinA=2kk1 and that k cannot lie between 13 and 3.

Open in App
Solution

K1=tan3AtanAtanA=sin2Acos3AsinA=2cosAcos3A

2KK1=2tan3AtanAcos3A2cosA=sin3AsinA

sin3AsinA=3sinA4sin3AsinA=34sin2A

Now we know

0sinA1

134sin2A3

12KK13

12KK112K1K1K2K13K13K

32KK13K32KK3

K13 and K3


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Method of Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon