wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tan(αβ)tanα+sin2γsin2α=1, then prove that tan γ is geometric mean of tan α and tan β.
i.e., than α tan β = tan2γ.

Open in App
Solution

tan(αβ)tanα+sin2γsin2α=1
sin2γsin2α=1tan(αβ)tanα
sin2γsin2α=1sin(αβ)cosαcos(αβ)sinα
sin2γsin2α=sinαcos(αβ)sin(αβ)cosαcos(αβ)sinα
sin2γ=sin(αα+β)cos(αβ)sinα×sin2α=sinβsinαcos(αβ)
sin2γ=sinαsinβcos(αβ)
csc2γ=cos(αβ)sinαsinβ=cosαcosβsinαsinβ+1
1+cot2γ=cotαcosβ+1
cot2γ=cotαcotβ
tan2γ=tanαtanβ
Hence proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon