If tan(θ+x)a=tan(θ+y)b=tan(θ+x)z then prove that a+ba−bsin2(x−y)+b+cb−csin2(y−z)+c+ac−asin2(z−x)=0
Open in App
Solution
ab=tan(θ+x)tan(θ+y)Apply compo and
divi. ∴a+ba−b=sin(2θ+x+y)sin(x−y) ∴a+ba−b=sin2(x−y)sin(2θ+x+y)sin(x−y) 12[cos(2θ+2y)−cos(2θ+2x)] ∴∑a+ba−bsin2(x−y)=0 as the terms in R.H.S will cancle.