If x2+5x+1(x+1)(x+2)(x+3)=Ax+1+B(x+1)(x+2)+C(x+1)(x+2)(x+3), then C=
According to the question.......................
x2+5x+1(x+1)(x+2)(x+3)=Ax+1+B(x+1)(x+2)+C(x+1)(x+2)(x+3)=A(x+2)(x+3)+B(x+3)+c(x+1)(x+2)(x+3)=A(x2+5x+6)+Bx+3B+c(x+1)(x+2)(x+3)x2+5x+1(x+1)(x+2)(x+3)=Ax2+(5A+B)x+6A+3B+c(x+1)(x+2)(x+3)x2+5x+1=Ax2+(5A+B)x+6A+3B+cGetcofficientcompare:x2:1=Ax:5=5A+B⇒5=5×1+B,B=0cofficientterm:1=6A+3B+C−−−−−−(i)1=6+CC=−5InwhichthevalueofA,B,Cis,A=1,B=0,C=−5So,thatthecorrectoptionisA.