If x(1+x2)(3−2x)=A3−2x+Bx+C1+x2 then C=?
Consider the given equation.
x(1+x2)(3−2x)=A(3−2x)+Bx+C(1+x2)
x=A(1+x2)+(Bx+C)(3−2x)
x=A+Ax2+3Bx−2Bx2+3C−2Cx …….. (1)
On comparing coefficient of x2, we get
0=A−2B
A=2B ……. (2)
On comparing coefficient of x, we get
1=3B−2C …….. (3)
On comparing constant term, we get
0=A+3C ……. (4)
From equation (2) and (4), we have
0=2B+3C
B=−32C
On putting B in equation (3), we get
1=3(−32C)−2C
1=(−92C)−2C
1=(−132C)
C=−213
Hence, the value of C is −213.