Let, x(y+z−x)logx=y(x+z−y)logy=z(x+y−z)logz=k.
Or, logx=x(y+z−x)k, multiplying by y on both sides, we get- ylogx=xy(y+z−x)k ....(1)
Also, multiplying both sides by z we get- zlogx=zx(y+z−x)k ........(2)
And, logy=y(x+z−y)k, multiplying both sides by x, we get- xlogy=xy(x+z−y)k .......(3)
Also, multiplying both sides by z we get- zlogy=zy(x+z−y)k ...........(4)
And, logz=z(x+y−z)k, multiplying both sides by y, we get- ylogz=yz(x+y−z)k .......(5)
Also, multiplying both sides by x we get- xlogz=xz(x+y−z)k ..........(6)
Adding 1 and 3, we have- log(xy)(yx)=xyzk
Adding 4 and 5, we have- log(yz)(zy)=xyzk
Adding 2 and 6, we have- log(zx)(xz)=xyzk
Comparing the RHS of above and removing ]log, we have-
(xy)(yx)=(yz)(zy)=(xz)(zx)..........(7)
Also, axyyx=byzzy=cxzzx..........(8)
Comparing 7 and 8, we get:
a=1, b=1, c=1
Hence, a+bc=21=2