1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Polar Representation of a Complex Number
If xtanθ+α=...
Question
If
x
tan
(
θ
+
α
)
=
y
tan
(
θ
+
β
)
=
z
tan
(
θ
+
γ
)
then prove that
x
+
y
x
−
y
sin
2
(
α
−
β
)
+
y
+
z
y
−
z
sin
2
(
β
−
γ
)
+
z
+
x
z
−
x
sin
2
(
γ
−
α
)
=
0
.
Open in App
Solution
According to question,
sin
(
A
+
B
)
sin
(
A
−
B
)
=
sin
A
cos
B
+
cos
A
sin
B
÷
cos
A
cos
B
sin
A
cos
B
−
sin
A
cos
B
÷
cos
A
cos
B
sin
(
A
+
B
)
sin
(
A
−
B
)
=
sin
A
cos
A
+
sin
B
sin
B
sin
A
cos
A
−
sin
B
sin
B
⇒
tan
A
+
tan
B
tan
A
−
tan
B
−
−
−
−
−
(
1
)
f
r
o
m
L
.
H
.
S
.
.
.
.
.
x
t
a
n
(
θ
+
α
)
=
y
t
a
n
(
θ
+
β
)
=
z
t
a
n
(
θ
+
γ
)
⇒
x
t
a
n
(
θ
+
α
)
=
y
t
a
n
(
θ
+
β
)
⇒
x
y
=
t
a
n
(
θ
+
α
)
t
a
n
(
θ
+
β
)
Using composndo & dividendo,
x
+
y
x
−
y
=
tan
(
θ
+
α
)
+
tan
(
θ
+
β
)
t
a
n
(
θ
+
α
)
−
tan
(
θ
+
β
)
−
−
−
−
−
|
u
s
i
n
g
e
q
u
−
−
(
1
)
x
+
y
x
−
y
=
sin
(
θ
+
α
+
θ
+
β
)
sin
(
θ
+
α
−
θ
−
β
)
=
sin
(
2
θ
+
α
+
β
)
sin
(
α
−
β
)
⇒
x
+
y
x
−
y
(
sin
2
(
α
−
β
)
)
=
sin
(
2
θ
+
α
+
β
)
s
i
n
2
(
α
−
β
)
sin
(
α
−
β
)
⇒
x
+
y
x
−
y
(
sin
2
(
α
−
β
)
)
=
1
2
[
2
sin
(
2
θ
+
α
+
β
)
sin
(
α
−
β
)
]
[
w
e
k
n
o
w
,
c
o
s
C
−
cos
D
=
2
sin
(
C
+
D
2
)
sin
(
C
−
D
2
)
⇒
x
+
y
x
−
y
(
sin
2
(
α
−
β
)
)
=
1
2
[
c
o
s
(
2
θ
+
2
β
)
−
cos
(
2
θ
+
2
α
]
−
−
−
−
−
(
2
)
s
i
m
i
l
a
r
l
y
.
.
.
.
.
.
.
.
⇒
y
+
z
y
−
z
(
sin
2
(
β
−
γ
)
)
=
1
2
[
c
o
s
(
2
θ
+
2
γ
)
−
cos
(
2
θ
+
2
β
]
−
−
−
−
−
−
(
3
)
⇒
z
+
a
z
−
a
(
sin
2
(
γ
−
α
)
)
=
1
2
[
c
o
s
(
2
θ
+
2
α
)
−
cos
(
2
θ
+
2
γ
]
−
−
−
−
−
−
(
4
)
i
f
a
d
d
i
n
g
e
q
u
.
.
.
.
.
.
(
2
)
,
(
3
)
&
(
4
)
t
h
e
n
w
e
p
r
o
v
e
t
h
a
t
,
∴
x
+
y
x
−
y
sin
2
(
α
−
β
)
+
y
+
z
y
−
z
sin
2
(
β
−
γ
)
+
z
+
a
z
−
a
sin
2
(
γ
−
α
)
=
0
Suggest Corrections
0
Similar questions
Q.
If
x
tan
(
θ
+
α
)
=
y
tan
(
θ
+
β
)
=
z
tan
(
θ
+
γ
)
, then find the value of
(
x
+
y
x
−
y
)
sin
2
(
α
−
β
)
+
(
y
+
z
y
−
z
)
sin
2
(
β
−
γ
)
+
(
z
+
x
z
−
x
)
sin
2
(
γ
−
α
)
=
Q.
Assertion :If
x
tan
(
θ
+
α
)
=
y
tan
(
θ
+
β
)
=
z
tan
(
θ
+
γ
)
, then
∑
x
+
y
x
−
y
sin
2
(
α
−
β
)
=
0
Reason:
x
+
y
x
−
y
=
tan
(
θ
+
α
)
+
tan
(
θ
+
β
)
tan
(
θ
+
α
)
−
tan
(
θ
+
β
)
=
sin
(
2
θ
+
α
+
β
)
sin
(
α
+
β
)
Q.
If
x
tan
(
θ
+
α
)
≃
y
tan
(
θ
+
β
)
≃
Z
tan
(
θ
+
γ
)
, then
∑
x
+
y
x
−
y
sin
2
(
α
−
β
)
is equal to
Q.
If
x
tan
(
θ
+
α
)
=
y
tan
(
θ
+
β
)
=
z
tan
(
θ
+
y
)
, then prove that
∑
x
+
y
x
−
y
sin
2
(
α
−
β
)
=
0
Q.
If
x
tan
(
θ
+
α
)
=
y
tan
(
θ
+
β
)
=
z
tan
(
θ
+
γ
)
,
then
∑
x
+
y
x
−
y
sin
2
(
α
−
β
)
=
0
. If this is true enter 1, else enter 0.
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Polar Representation of a Complex Number
MATHEMATICS
Watch in App
Explore more
Polar Representation of a Complex Number
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app