wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If xtan(θ+α)=ytan(θ+β)=ztan(θ+γ) then prove that x+yxysin2(αβ)+y+zyzsin2(βγ)+z+xzxsin2(γα)=0.

Open in App
Solution

According to question,
sin(A+B)sin(AB)=sinAcosB+cosAsinB÷cosAcosBsinAcosBsinAcosB÷cosAcosBsin(A+B)sin(AB)=sinAcosA+sinBsinBsinAcosAsinBsinBtanA+tanBtanAtanB(1)fromL.H.S.....xtan(θ+α)=ytan(θ+β)=ztan(θ+γ)xtan(θ+α)=ytan(θ+β)xy=tan(θ+α)tan(θ+β)
Using composndo & dividendo,
x+yxy=tan(θ+α)+tan(θ+β)tan(θ+α)tan(θ+β)|usingequ(1)x+yxy=sin(θ+α+θ+β)sin(θ+αθβ)=sin(2θ+α+β)sin(αβ)x+yxy(sin2(αβ))=sin(2θ+α+β)sin2(αβ)sin(αβ)x+yxy(sin2(αβ))=12[2sin(2θ+α+β)sin(αβ)][weknow,cosCcosD=2sin(C+D2)sin(CD2)x+yxy(sin2(αβ))=12[cos(2θ+2β)cos(2θ+2α](2)similarly........y+zyz(sin2(βγ))=12[cos(2θ+2γ)cos(2θ+2β](3)z+aza(sin2(γα))=12[cos(2θ+2α)cos(2θ+2γ](4)ifaddingequ......(2),(3)&(4)thenweprovethat,x+yxysin2(αβ)+y+zyzsin2(βγ)+z+azasin2(γα)=0


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Polar Representation of a Complex Number
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon