The correct option is D 40
x+y−82=x+2y−143=3x−y4
⇒x+y−82=x+2y−143
⇒3x+3y−24=2x+4y−28
⇒x−y=−4⋯(i)
andx+2y−143=3x−y4
⇒4x+8y−56=9x−3y
⇒5x−11y=−56⋯(ii)
From (i) and (ii),
D=[1−15−11]=−11×1−(−1)×5=−11+5=−6Dx=[−4−1−56−11]=−11×(−4)−(−1)×(−56)=44−56=−12Dy=[1−45−56]=−56×1−(−4)×5=−56+20=−36∴x=DxD=−12−6=2y=DyD=−36−6=6
So, we have: (x,y)=(2,6)⇒x2+y2=40