If xy=cosAcosB then xtanA+ytanBx+y=
We have,
xy=cosAcosB
x=ycosAcosB
Since,
=xtanA+ytanBx+y…….. (1)
On putting the value of x in equation (1), we get
=ycosAcosB×sinAcosA+ysinBcosBycosAcosB+y
=ysinAcosB+ysinBcosBycosA+ycosBcosB
=y(sinA+sinB)cosBy(cosA+cosB)cosB
=(sinA+sinB)(cosA+cosB)
We know that
sinA+sinB=2sin(A+B2)⋅cos(A−B2)
cosA+cosB=2cos(A+B2)⋅cos(A−B2)
Therefore,
=2sin(A+B2)⋅cos(A−B2)2cos(A+B2)⋅cos(A−B2)
=tan(A+B2)
Hence, the value is tan(A+B2).