wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y+zpb+qc=z+xpc+qa=x+ypa+qb, show that 2(x+y+z)a+b+c=(b+c)x+(c+a)y+(a+b)zbc+ca+ab.

Open in App
Solution

y+zpb+qc=z+xpc+qa=x+ypa+qb=k

(y+z)=k(pb+qc)(I)
(z+x)=k(pc+qa)(II)
(x+y)=k(pa+qb)(III)

Adding 1,2 and 3

2(x+y+z)=k[p(a+b+c)+q(a+b+c)]

2(x+y+z)a+b+c=k(p+q)(a)

Now, (I)×a
(II)×b
(III)×c and then adding each equation

a(y+z)=k(pab+qac)
b(z+x)=k(pbc+qab)
c(x+y)=k(pac+qbc)
then add
(b+c)x+(a+c)y+(a+b)z=k(p+q)[ab+bc+ca]

(b+c)x+(a+c)y+(a+b)z=k(p+q)(b)
Equation (a)=(b)

2(x+y+z)a+b+c=(b+c)x+(a+c)y+(a+b)zbc+ca+ab

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon