If 0≤θ≤π and 81sin2θ+81cos2θ=30, then θ
81sin2θ+81cos2θ=30
⇒81sin2θ+811−sin2θ=30
Assume 81sin2θ=x
⇒x+81x=30
⇒x2−30x+81=0
⇒(x−3)(x−27)=0
⇒x=3,27⇒81sin2θ=34sin2θ=31,33
⇒sin2θ=14,34
given 0≤θ≤π,
therefore, sinθ=12,√32
Hence,
θ=30∘,60∘,120∘,150∘,
Hence, options 'A', 'B', 'C' and 'D' are correct.