The correct option is A x(1−i),xϵR
Given, (1+i)z=(1−i)¯z
Multiply both sides by (1−i)
(1+i)(1−i)z=(1−i)2¯z
⇒(1−i2)=(1−2i+i2)¯z
⇒2z=−2i¯z,∵i2=−1
⇒z=−i¯z ......(1)
Now let z=x+iy∴¯z=x−iy
(1)⇒x+iy=−i(x−iy)=−ix+i2y=−y−ix
Equating coefficients, y=−x
∴z=x−ix=x(1−i),x∈R