The correct options are
A sec−11x
B π+tan−1√1−x2x
C π−sin−1√1−x2
D cot−1x√1−x2
Let x=cosθ , π2<θ<π
cos−1x=θ , −1<x<0
The range of sec−1 function is [0,π2)∪(π2,π].
sec−1(1x)=sec−1(1cosθ)
⇒sec−1(1x)=sec−1(secθ)=θ
Hence, option A is correct.
sin−1√1−x2=sin−1√1−cos2θ
⇒sin−1√1−x2=sin−1(|sinθ|)
|sinθ|>0 for −1<x<0
⇒sin−1√1−x2=sin−1(−sinθ)
⇒sin−1√1−x2=sin−1(sin(π−θ))
⇒sin−1√1−x2=π−θ (The range of sin inverse function is [−π2,π2]
Hence, option B is correct.
tan−1(√1−x2x)=tan−1(√1−cos2θcosθ)
⇒tan−1(√1−x2x)=tan−1(|sinθ|cosθ)
⇒tan−1(√1−x2x)=tan−1(tanθ)
⇒tan−1(√1−x2x)=tan−1(tan(θ−π))
⇒tan−1(√1−x2x)=θ−π (The range of tan inverse function is (−π2,π2))
Hence, option C is correct.
Similarly,
cot−1(x√1−x2)=cot−1(cotθ)=θ (The range of cot inverse function is (0,π) )
Hence, option D is also correct