Using cosx=1−tan2x21+tan2x2,sinx=2tanx21+tan2x2
∴sinx+2cosx=1
⇒(2tanx21+tan2x2)+2(1−tan2x21+tan2x2)=1
⇒3tan2x2−2tanx2−1=0
⇒(3tanx2+1)(tanx2−1)=0
⇒tanx2=1 or −13
Now 7cosx+6sinx
=7(1−tan2x21+tan2x2)+6(2tanx21+tan2x2)
When tanx2=1⇒7cosx+6sinx=6
And when tanx2=−13⇒7cosx+6sinx=2
Therefore sum of value of solution is 6+2=8