If 2sec2A−sec4A−2cosec2A+cosec4A=154, then tanA is equal to
A
1√2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−1√2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are A1√2 D−1√2 2sec2A−sec4A−2csc2A+csc4A=154⇒2(1+tan2A)−(1+tan2A)2−2(1+cot2A)+(1+cot2A)2=154⇒2+2tan2A−1−tan4A−2tan2A−2−2cot2A+1+cot4A+2cot2A=154⇒cot4A−tan4A=154 Let tan4A=y 1y−y=154⇒4y2+15y−4=0∴y=−4,14 ⇒tan4A≠−4{∵tan4A>0} And tan4A=14∴tanA=±1√2