if 2sin2((π2)cos2x)=1−cos(πsin22x),x≠(2n+1)π2,nϵI,then cos2x is equal to
A
15
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
45
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B12 2sin2(π2cos2x)=1−cos(πsin22x),x≠(2n+1)π2,n∈I ⇒2sin2(π2cos2x)=2sin2(π2sin22x)⇒π2cos2x=nπ±π2sin22x⇒cos2x=2n±sin22x By observation, only n=0 holds and cos2x=sin22x →cos2x=0 or sin2x=14 but, given x≠(2n+1)π2 ∴cos2x=1−2sin2x=12