2f(x)+f(−x)=1xsin(x−1x) ..... (i)
Replace x by −x
2f(−x)+f(x)=1xsin(x−1x) ..... (ii)
2(i)−(ii) gives
3f(x)=1xsin(x−1x)
⇒f(x)=13xsin(x−1x)
I=∫e1/ef(x)dx=∫e1/e13xsin(x−1x)dx
put x=1t⇒dx=−1t2dt
I=∫1/ee13tsin(1t−t)(−1t2dt)
=∫1/ee13tsin(t−1t)dt
=−∫e1/e13xsin(x−1x)dx⇒I=−I⇒I=0