Substitute x=1 in 2f(x)=f(xy)+f(xy) ...(i)
2f(1)=f(y)+f(1y) ...(ii)
⇒f(y)=−f(1y)
Replacing x by y and y by x in Eq. (i), we get
2f(y)=f(yx)+f(yx) .....(iii)
Eqs. (i) and (iii),
2{f(x)−f(y)}=f(xy)−{−f(xy)}=2f(xy) ...(iv)
f(x)−f(y)=f(xy) ...(v)
limh→0f(1+h)−f(1)h=f′(1)=1
limh→0f(1+h)h=1, as f(1)=0
f′(x)=limh→0f(x+h)−f(x)h
=limh→0f(1+hx)h=1x
f(x)=log|x|+c
f(1)=0⇒c=0
f(e)=1