1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Trigonometric Identities
If 7sin 2 θ...
Question
If
7
sin
2
θ
+
3
cos
2
θ
=
4
then prove that
sec
θ
+
cosec
θ
=
2
+
2
√
3
.
Open in App
Solution
7
sin
2
θ
+
3
cos
2
θ
=
4
⇒
7
sin
2
θ
+
3
(
1
−
sin
2
θ
)
=
4
⇒
7
sin
2
θ
+
3
−
3
sin
2
θ
=
4
⇒
4
sin
2
θ
=
1
⇒
sin
2
θ
=
1
4
⇒
sin
θ
=
1
2
⇒
sin
θ
=
sin
30
∘
⇒
θ
=
30
∘
L.H.S
=
sec
θ
+
cosec
θ
=
sec
30
∘
+
cosec
30
∘
=
2
√
3
+
2
=
R.H.S
Hence proved.
Suggest Corrections
1
Similar questions
Q.
If
3
cos
2
θ
+
7
sin
2
θ
=
4
, show that
cot
θ
=
√
3
.
Q.
If 7
s
i
n
2
θ
+
3
c
o
s
2
θ
=
4
, then
s
e
c
θ
+
c
o
s
e
c
θ
is equal to
Q.
If 7 sin
2
θ + 3 cos
2
θ = 4, show that tan θ =
1
3