Differentiation to Solve Modified Sum of Binomial Coefficients
If a1,a2,.....
Question
If a1,a2,....,an are in H.P., then the expression a1a2+a2a3+....+an−1an
A
n(a1−an)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(n−1)(a1−an)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
na1an
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(n−1)a1an
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D(n−1)a1an Given that, a1,a2,a3,⋯,bnϵH.P. ⇒1a1,1a2,...1anϵA.P. ∴d=a1−a2a1a2=a2−a3a2a3=...=an−1−anan−1an=a1−an(n−1)a1an ∴d=a1−ana1a2+a2a3+...+an−1an ⇒a1−an(n−1)a1an=a1an(1an−1a1)a1a2+a2a3+...+an−1an Therefore, a1a2+a2a3+...+an−1an=(n−1)a1an Ans: D