If a2+b2+2c2−4a+2c−2ab+5=0 then the possible value of a+b−c is:
If a,b and c are real number such that a2+b2+2c2=4a-2c+2bc-5,then find the possible value of (6a-4b-2c).
If a + b = 5 and a - b = 1 find the value of a² + b²/2ab
If (a-b) sin (θ+ϕ) = (a+b) sin (θ+ϕ) and a tan(θ2) - btan(ϕ2) = C,the the value of sinϕ is equal