The correct option is
B a=b=cThe given question is,
(x−a)(x−b)+(x−b)(x−c)+(x−c)(x−a)=0
∴x2−(a+b)x+ab+x2−(b+c)x+bc+x2−(a+c)x+ac=0
∴3x2−x(a+b+b+c+c+a)+ab+bc+ac=0
∴3x2−x(2a+2b+2c)+(ab+bc+ac)=0
Compare this equation with standard form of quadratic equation ax2+bx+c=0, we get,
a=3, b=−2(a+b+c) and c=ab+bc+ac
Now, we know that roots of quadratic equation are same if discriminant is zero.
∴b2−4ac=0
∴[−2(a+b+c)]2−4(3)(ab+bc+ac)=0
∴4(a2+b2+c2+2ab+2bc+2ac)−12(ab+bc+ac)=0
∴4a2+4b2+4c2+8ab+8bc+8ac−12ab−12bc−12ac=0
∴4a2+4b2+4c2−4ab−4bc−4ac=0
∴2(2a2+2b2+2c2−2ab−2bc−2ac)=0
∴2a2+2b2+2c2−2ab−2bc−2ac=0
∴a2+a2+b2+b2+c2+c2−2ab−2bc−2ac=0
Rearranging above equation, we get
(a2−2ab+b2)+(b2−2bc+c2)+(a2−2ac+c2)=0
∴[(a−b)2+(b−c)2+(a−c)2]=0
This condition is possible if and only if,
(a−b)2=0, (b−c)2=0 and (a−c)2=0
i.e. a−b=0, b−c=0 and a−c=0
∴a=b,b=c,a=c
∴a=b=c
Thus, Answer is option (B)