If A+B=π3 and cosA+cosB=1 then
We know that: cosA+cosB=1
Also, cosA+cosB=2cos(A+B2)cos(A−B2)
⟹2cos(A+B2)cos(A−B2)=1 and A+B=π3
⟹2cos(A−B2)=1√3
⟹cos(A−B)=2cos2(A−B2)−1=23−1=−13
Also,
cosAcosB=cos(A+B)+cos(A−B)2=112 and cosA+cosB=1
⟹12cos2A−12cosA+1=0
⟹cosA=12±√9624
So this the solution for cosA and cosB. Now we can easily find |cosA−cosB| by taking the difference of the two roots,
|cosA−cosB|=2×√9624=√23