If a+btanθ=secθ and b−atanθ=3secθ, then find the value of a2+b2
Open in App
Solution
Given equations are a+btanθ=secθ and b−atanθ=3secθ Squaring and adding, we get a2+b2tan2θ+2abtanθ+b2+a2tan2θ−2abtanθ=sec2θ+9sec2θ⇒(a2+b2)+(a2+b2)tan2θ=10sec2θ⇒(a2+b2)sec2θ=10sec2θ⇒(a2+b2)=10