L.H.S.
=I+A
=[1001]+[0−tanα2tanα20]
=[1−tanα2tanα21]...(1)
and R.H.S.
=(I−A)[cosα−sinαsinαcosα]
=([1001]−[0−tanα2tanα20])[cosα−sinαsinαcosα]
=[1−tanα2tanα21][cosα−sinαsinαcosα]
=[cosα+sinαtanα2−sinα+cosαtanα2−cosαtanα2+sinαsinαtanα2+cosα]
=⎡⎢⎣1−2sin2α2+2sinα2cosα2tanα2−2sinα2+cosα2+(2cos2α2−1)tanα2−(2cos2α2−1)tanα2+2sinα2cosα22sinα2cosα2tanα2+1−2sin2α2⎤⎥⎦
=[1−2sin2α2+2sin2α2−2sinα2cosα2+2sinα2cosα2−tanα2−2sinα2cosα2tanα2+2sinα2+cosα22sin2α2+1−2sin2α2]
=[1−tanα2tanα21]
Clearly L.H.S. = R.H.S. Hence proved