wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If A=[0tanα2tanα20] and I is the identity matrix of order 2, show that I+A=(IA)[cosαsinαsinαcosα]

Open in App
Solution

L.H.S.
=I+A
=[1001]+[0tanα2tanα20]
=[1tanα2tanα21]...(1)
and R.H.S.
=(IA)[cosαsinαsinαcosα]
=([1001][0tanα2tanα20])[cosαsinαsinαcosα]
=[1tanα2tanα21][cosαsinαsinαcosα]
=[cosα+sinαtanα2sinα+cosαtanα2cosαtanα2+sinαsinαtanα2+cosα]
=12sin2α2+2sinα2cosα2tanα22sinα2+cosα2+(2cos2α21)tanα2(2cos2α21)tanα2+2sinα2cosα22sinα2cosα2tanα2+12sin2α2
=[12sin2α2+2sin2α22sinα2cosα2+2sinα2cosα2tanα22sinα2cosα2tanα2+2sinα2+cosα22sin2α2+12sin2α2]
=[1tanα2tanα21]
Clearly L.H.S. = R.H.S. Hence proved

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Adjoint and Inverse of a Matrix
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon