The correct option is B 34≤A≤1
A=cos2θ+sin4θ
=cos2θ+sin2θ×sin2θ
Since sin2θ≤1
⇒A≤(cos2θ+sin2θ)
⇒A≤1
Also A=cos2θ+sin4θ
=(1−sin2θ)+sin4θ
$\displaystyle =\left ( \sin ^{2}\theta -\frac{1}{2} \right )^{2}+\frac{3}{4} \geq \frac{3}{4}\because \left ( \sin ^{2}\theta -\frac{1}{2} \right )^{2}\geq 0$
Thus 34≤A≤1