It is given that A=⎡⎢⎣111111111⎤⎥⎦
To show: P(n):An=⎡⎢⎣3n−13n−13n−13n−13n−13n−13n−13n−13n−1⎤⎥⎦,n∈N
We shall prove that the result by using the principle of mathematical induction .
For n=1, we have:
P(1):⎡⎢⎣3n−13n−13n−13n−13n−13n−13n−13n−13n−1⎤⎥⎦=⎡⎢⎣303030303030303030⎤⎥⎦=⎡⎢⎣111111111⎤⎥⎦=A
Therefore, the result is true for n=1.
Let the result be true for n=k.
That
is P(k):Ak=⎡⎢
⎢⎣3k−13k−13k−13k−13k−13k−13k−13k−13k−1⎤⎥
⎥⎦
Now, we prove that the result is true for n=k+1.
Now, Ak+1=A.Ak
⎡⎢⎣111111111⎤⎥⎦k⎡⎢
⎢⎣3k−13k−13k−13k−13k−13k−13k−13k−13k−1⎤⎥
⎥⎦
=⎡⎢
⎢⎣3.3k−13.3k−13.3k−13.3k−13.3k−13.3k−13.3k−13.3k−13.3k−1⎤⎥
⎥⎦
=⎡⎢
⎢⎣3(k+1)−13(k+1)−13(k+1)−13(k+1)−13(k+1)−13(k+1)−13(k+1)−13(k+1)−13(k+1)−1⎤⎥
⎥⎦
Therefore, the result is true for n=k+1.
Thus by the principle of mathematical induction , we have:
An=⎡⎢⎣3n−13n−13n−13n−13n−13n−13n−13n−13n−1⎤⎥⎦,n∈N