a=log1218=log18log12=log(32⋅2)log(22⋅3)=2log3+log22log2+log3
[∵logba=logalogb,log(ab)=loga+logb,logam=mloga]
Similarly b=log2454=log2+3log33log2+log3
Now, c=ab+5(a−b)=(a−5)(b+5)+25
⇒c=(2log3+log22log2+log3−5)(log2+3log33log2+log3+5)+25
⇒c=(2log3+log22log2+log3−5)(log2+3log33log2+log3+5)+25
⇒c=(−3log3−9log22log2+log3)(16log2+8log33log2+log3)+25=−24+25=1
Ans: 1