An=cosnθ+sinnθ
A6=cos6θ+sin6θ
=1−3sin2θcos2θ
=1−34sin22θ
A4=cos4θ+sin4θ
=1−2sin2θcos2θ
=1−12sin22θ
(A6+A4) =1−34sin22θ+1−12sin22θ
=2−54sin22θ
(A6−A4)=1−34sin22θ−1+12sin22θ
=−14sin22θ
⎛⎜ ⎜ ⎜⎝A6+A4−34A6−A4+14⎞⎟ ⎟ ⎟⎠=2−54sin22θ−34−14sin22θ+14
=54(1−sin22θ)14(1−sin22θ)
=5