asin2x+bcos2x=c⇒asin2x+b(1−sinx)=c⇒asin2x+b−bsin2x=c⇒(a−b)sin2x=c−b
⇒sin2x=c−ba−basin2x+bcos2x=c⇒a(1−cos2x)+bcos2x=c⇒a−acos2x+bcos2x=c⇒(b−a)cos2x=c−a
⇒cos2x=c−ba−b
∴tan2x=c−ba−c
bsin2y+acos2y=d⇒bsin2y+a(1−sin2y)=d⇒bsin2y+a−asin2y=d⇒(b−a)sin2y=d−a
⇒sin2y=d−ab−a
bsin2y+acos2y=d⇒b(1−cos2y)+acos2y=d⇒b−bcos2y+acos2y=d⇒(a−d)cos2y=d−b
⇒cos2y=d−ba−b
∴tan2y=d−ba−d
atanx=btany⇒tanxtany=ba⇒tan2xtan2y=b2a2
⇒a2b2=(d−a)(c−a)(b−c)(b−d)