If α and β are the roots of the equation a cos2θ+bsin2θ=c then cos2α+cos2β is equal to
Given acos2θ+bsin2θ=c
⇒bsin2θ=c−acos2θ
squaring both side
⇒b2sin22θ=c2−2accos2θ+a2cos22θ
⇒b2−b2cos22θ=c2−2accos2θ+a2cos22θ
⇒(a2+b2)cos22θ−2accos2θ+(c2−b2)=0
⇒cos2θ=2ac±√4a2c2−4(a2+b2)(c2−b2)2(a2+b2)
⇒2cos2θ−1=ac±√a2b2−b2c2+b4(a2+b2)
⇒cos2θ=a2+b2+ac±√a2b2−b2c2+b42(a2+b2)
also given α and β are the
roots, so
cos2α+cos2β=a2+b2+aca2+b2
Hence, option 'A' is correct.