Byju's Answer
Standard XII
Mathematics
Definite Integral as Limit of Sum
If α ,β are...
Question
If
α
,
β
are non-real numbers satisfying
x
3
−
1
=
0
then the value of
∣
∣ ∣
∣
λ
+
1
α
β
α
λ
+
β
1
β
1
λ
+
α
∣
∣ ∣
∣
is equal to
A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
λ
3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
λ
3
+
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
λ
3
Since,
α
,
β
are non-real numbers satisfying
x
3
−
1
=
0
(
x
−
1
)
(
x
2
+
x
+
1
)
=
0
So,
x
=
1
,
α
=
ω
,
β
=
ω
2
⇒
1
+
α
+
β
=
0
Now,
∣
∣ ∣
∣
λ
+
1
α
β
α
λ
+
β
1
β
1
λ
+
α
∣
∣ ∣
∣
C
1
→
C
1
+
C
2
+
C
3
=
∣
∣ ∣
∣
λ
+
1
+
α
+
β
α
β
λ
+
1
+
α
+
β
λ
+
β
1
λ
+
1
+
α
+
β
1
λ
+
α
∣
∣ ∣
∣
λ
∣
∣ ∣
∣
1
α
β
1
λ
+
β
1
1
1
λ
+
α
∣
∣ ∣
∣
R
2
→
R
2
−
R
1
,
R
3
→
R
3
−
R
1
λ
∣
∣ ∣
∣
1
α
β
0
λ
+
β
−
α
1
−
β
0
1
−
α
λ
+
α
−
β
∣
∣ ∣
∣
=
λ
[
(
λ
+
β
−
α
)
(
λ
−
(
β
−
α
)
)
−
(
1
−
α
)
(
1
−
β
)
]
=
λ
[
λ
2
−
(
β
−
α
)
2
−
(
1
−
α
−
β
+
α
β
)
]
=
λ
[
λ
2
−
(
ω
2
+
ω
4
−
2
)
−
(
1
+
1
+
1
)
]
=
λ
3
Suggest Corrections
0
Similar questions
Q.
If
α
,
β
are non real numbers satisfying
x
3
−
1
=
0
then the value of
∣
∣ ∣
∣
λ
+
1
α
β
α
λ
+
β
1
β
1
λ
+
α
∣
∣ ∣
∣
is equal to
Q.
If
α
,
β
are non real numbers satisfying
x
3
−
1
=
0
then the value of
∣
∣ ∣
∣
λ
+
1
α
β
α
λ
+
β
1
β
1
λ
+
α
∣
∣ ∣
∣
is equal to
Q.
If
α
and
β
are non-real numbers satisfying
x
3
−
1
=
0
, then the value of
∣
∣ ∣
∣
λ
+
1
α
β
α
λ
+
β
1
β
1
λ
+
α
∣
∣ ∣
∣
is?
Q.
If
α
,
β
,
γ
are the roots of
x
3
−
x
2
−
1
=
0
, then the value of
(
1
+
α
)
(
1
−
α
)
+
(
1
+
β
)
(
1
−
β
)
+
(
1
+
γ
)
(
1
−
γ
)
is equal to
Q.
If the polynomial
P
(
x
)
=
24
x
4
+
λ
1
x
3
+
λ
2
x
2
+
λ
3
x
+
1
, where
λ
1
,
λ
2
,
λ
3
∈
R
has four positive real roots
α
,
β
,
γ
,
δ
such that
α
+
2
β
+
3
γ
+
4
δ
=
4
, then
View More
Related Videos
Definite Integral as Limit of Sum
MATHEMATICS
Watch in App
Explore more
Definite Integral as Limit of Sum
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app