wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If α=cos2πn+isin2πn, then nr=1(ar+b)αr1

A
naα1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
nbα1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
nαα1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
aα1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A naα1
α=cos2πn+isin2πn
αn=cos2π+isin2π
αn=1
Now, nr=1(ar+b)αr1
=(a+b)+(2a+b)α+(3a+b)α2+....+(na+b)αn1
=(a+2aα+3aα2+....+naαn1)+b(1+α+α2+....+αn1)
=(a+2aα+3aα2+....+naαn1)(α is nth root of unity.So 1+α+α2+....αn1=0)
which is AGP.
Let S=(a+2aα+3aα2+....+naαn1)
αS=aα+2aα2+...+(n1)aαn1+naαn
(1α)S=a+aα+aα2+....aαn1naαn
(1α)S=naαn(α is nth root of unity.So 1+α+α2+....αn1=0)
S=naα1


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Dimensional Analysis
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon