The correct option is
B −12α=cos(8π11)+isin(8π11)
We know, z=cosθ+isinθ=eiθ
∴ α=ei8π11
⇒ α+α2+α3+α4+α5=α(α5−1)α−1 ........................... as forming G.P.
=α6−αα−1
=(ei8π11)6−ei8π11ei8π11−1 ---- ( 1 )
e−48π11=cos48π11+isin48π11
=cos(4π+4π11)+isin(4π+4π11)
=cos4π11+isin4π11
=ei4π11
Substituting above value in ( 1 ) we get,
⇒ α+α2+α3+α4+α5=ei4π11−ei8π11ei8π11−1
=t−t2t2−1 [ Let ei4π11=t]
=−t(1−t)(t−1)(t+1)
=−tt+1
=−(cos4π11+isin4π11)cos4π11+isin4π11+1
Let a=cos4π11=a and b=sin4π11
=(a+ib(a+1)+ib)×(a+1)−ib(a+1)−ib
=−(1+ib)(a+1)−ib[(a+1)+ib][(a+1)−ib]
=−(a(a+1)+b2)+i(b(a+1)−ab)(a+1)2+b2
=−a(a+1)+b2(a+1)2+b2 [ Taking real part only ]
=−a2+b2+aa2+b2+1+2a
=−1+a2+2a
=−(1+a)2(1+a)
=−12