wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If =∣ ∣ ∣ ∣ ∣1(a+x)1(b+x)1(c+x)1(a+y)1(b+y)1(c+y)1(a+z)1(b+z)1(c+z)∣ ∣ ∣ ∣ ∣=PQ, where Q is the product of denominators. Find P

A
(bc)(ca)(ab)(y+z)(z+x)(x+y)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(bc)(ca)(ab)(yz)(zx)(xy)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
(b+c)(c+a)(a+b)(yz)(zx)(xy)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(b+c)(c+a)(a+b)(y+z)(z+x)(x+y)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B (bc)(ca)(ab)(yz)(zx)(xy)
Δ=∣ ∣ ∣ ∣ ∣1(a+x)1(b+x)1(c+x)1(a+y)1(b+y)1(c+y)1(a+z)1(b+z)1(c+z)∣ ∣ ∣ ∣ ∣

Apply C2C2C1;C3C3C1

=∣ ∣ ∣ ∣ ∣1(a+x)(ab)(a+x)(b+x)(ac)(a+x)(c+x)1(a+y)(ab)(a+y)(b+y)(ac)(a+y)(c+y)1(a+z)(ab)(a+z)(b+z)(ac)(a+z)(c+z)∣ ∣ ∣ ∣ ∣

=∣ ∣ ∣ ∣ ∣1(a+x)1(a+x)(b+x)1(a+x)(c+x)1(a+y)1(a+y)(b+y)1(a+y)(c+y)1(a+z)1(a+z)(b+z)1(a+z)(c+z)∣ ∣ ∣ ∣ ∣

=(ab)(ac)Q∣ ∣ ∣(b+x)(c+x)c+xb+x(b+y)(c+y)c+yb+y(b+z)(c+z)c+zb+z∣ ∣ ∣

apply R2R2R1;R3R3R1

=(ab)(ac)Q∣ ∣ ∣(b+x)(c+x)c+xb+x(yx)(y+x+b+c)(yx)(yx)(zx)(z+x+b+c)(zx)(zx)∣ ∣ ∣

=(ab)(ac)(yx)(zx)Q∣ ∣ ∣(b+x)(c+x)c+xb+xy+x+b+c11z+x+b+c11∣ ∣ ∣

apply R3R3R2

=(ab)(ac)(yx)(zx)Q∣ ∣ ∣(b+x)(c+x)c+xb+xy+x+b+c11(zy)00∣ ∣ ∣

=(ab)(ac)(yx)(zx)(zy)Qc+xb+x11

=(ab)(ac)(yx)(zx)(zy)(cb)Q

Δ=(ab)(bc)(ca)(xy)(yz)(zx)Q=PQ (given)

Hence P=(ab)(bc)(ca)(xy)(yz)(zx)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Distance Formula
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon