If C0,C1,C2,....Cn are binomial coefficient in the expansion of (1+x)n, then value of C1+C4+C7+... equals
Given (1+x)n=C0+C1x+C2x2+⋯+Cnxn
∴x2(1+x)n=x2C0+C1x3+C2x4+⋯+Cnxn+2(∗)
Now substituting x=1,ω,ω2in(∗), we get 2n=C0+C1+C2+C3+⋯+Cn⋯(1)
ω2(1+ω)n=C0ω2+C1ω3+C2ω4+⋯+Cn.ωn+2...(2)
ω4(1+ω2)n=C0ω4+C1ω6+C2ω8+⋯+Cn.ω2n+4...(3)
Now adding (1), (2) and (3) we get
2n+ω,2(1+ω)n+ω4(1+ω2)n
=C0(1+ω+ω2)+C1(1+ω3+ω6)+C2(1+ω+ω2)
+....=3(C1+C4+C7+⋯) (other terms
vanished).3(C1+C4+C7+⋯)
=2n+ω2(cosnπ2+isinnπ3)+ω4(cosnπ3−isinnπ3) =2n+(ω2+ω)cosnπ3+i(ω2−ω)sinnπ3
=2n−cosnπ3+i(−√3i)sinnπ3 As ω=−1+i√32andω2=−1−i√32 ω2−ω=−12−i√32+12−i√32=i√3
ω2−ω=−√3 ∴3(C1+C4+C7⋯)=2n−cosnπ3+√3sinnπ3 C1+C4+C7+⋯=13(2n−cosnπ3+√3sinnπ3)