The correct option is D 22n+1.n.(n!)2(2n+1)!
∵C01−C13+C25−(−1)nCn2n+1=k∫10x(1−x2)n−1dx
⇒∫10(1−x2)ndx=k[(1−x2)n−2n]10=k2n
Put x=sinθ,dx=cosθdθ
∴∫π20cos2n+1θdθ=k2n
⇒2n(2n−2)(2n−4)....4.2(2n+1)(2n−1)(2n−3)....5.3.1=k2n
⇒[2n(2n−2)(2n−4).....4.2]2(2n+1)2n(2n−1)(2n−2).....5.4.3.2.1=k2n
⇒22n(n!)2(2n+1)!=k2n⇒k=22n+1n(n!)2(2n+1)!