Let cosA=pa and cosB=qb
Thus α=A+B
⇒cosα=cos(A+B) (Taking cos on both sides)
⇒cosα=cosAcosB−sinAsinB
⇒cosα=paqb−√1−p2a2√1−q2b2
⇒cosα=pqab−√(a2−p2)(b2−q2)ab
⇒cosα=pq−√(a2−p2)(b2−q2)ab
⇒cos2α=(pq−√(a2−p2)(b2−q2)ab)2 (squaring both sides)
⇒cos2α=p2q2−2pq√(a2−p2)(b2−q2)+(a2−p2)(b2−q2)a2b2
⇒cos2α=a2b2−b2p2−a2q2+2p2q2−2pq√(a2−p2)(b2−q2)a2b2
Lets take 1−cos2α=1−a2b2−b2p2−a2q2+2p2q2−2pq√(a2−p2)(b2−q2)a2b2
⇒sin2α=a2b2−a2b2+b2p2+a2q2−2p2q2+2pq√(a2−p2)(b2−q2)a2b2
⇒sin2α=b2p2+a2q2a2b2−2p2q2−2pq√(a2−p2)(b2−q2)a2b2
⇒sin2α=p2a2+q2b2−2pqab×pq−√(a2−p2)(b2−q2)ab
⇒sin2α=p2a2+q2b2−2pqabcosα (substituting value of cosα found above)
Hence, proved.