wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cos1pa+cos1qb=α, then prove that p2a22pqabcosα+q2b2=sin2α

Open in App
Solution

Let cosA=pa and cosB=qb
Thus α=A+B
cosα=cos(A+B) (Taking cos on both sides)
cosα=cosAcosBsinAsinB
cosα=paqb1p2a21q2b2
cosα=pqab(a2p2)(b2q2)ab
cosα=pq(a2p2)(b2q2)ab
cos2α=(pq(a2p2)(b2q2)ab)2 (squaring both sides)
cos2α=p2q22pq(a2p2)(b2q2)+(a2p2)(b2q2)a2b2
cos2α=a2b2b2p2a2q2+2p2q22pq(a2p2)(b2q2)a2b2
Lets take 1cos2α=1a2b2b2p2a2q2+2p2q22pq(a2p2)(b2q2)a2b2
sin2α=a2b2a2b2+b2p2+a2q22p2q2+2pq(a2p2)(b2q2)a2b2
sin2α=b2p2+a2q2a2b22p2q22pq(a2p2)(b2q2)a2b2
sin2α=p2a2+q2b22pqab×pq(a2p2)(b2q2)ab
sin2α=p2a2+q2b22pqabcosα (substituting value of cosα found above)
Hence, proved.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon