If cos−1(x2)+cos−1(y3)=θ, then maximum value of 9x2−12xycosθ+4y2 is
A
18
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
30
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
24
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
36
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D36 cos−1(x2)+cos−1(y3)=θ ⇒cos−1(xy6−√(1−(x2)2).(1−(y3)2))=θ ⇒(xy6−(√(1−(x2)2).(1−(y3)2)=cosθ ⇒(xy6−cosθ)=√(1−(x2)2).(1−(y3)2) Squaring both side ⇒x2y236−xycosθ3+cos2θ=(1−(x2)2).(1−(y3)2)=1−x24−y29+x2y236 ⇒9x2−12xycosθ+4y2=36(1−cos2θ) Hence maximum value of ⇒9x2−12xycosθ+4y2 is 36.