Wehavecos−1yb=nlogxn⟹y=bcos[nlogxn].........equation1Differentiating(1),wegetdydx=−bsin(nlog(xn))nxn⋅1nxdydx=−bnsin(nlog(xn))Againdifferentiating,wehavexd2ydx2+dydx=−bncos(nlogxn)nxn1n⟹x2d2ydx2+xdydx=−bn2cos(nlogxn)=−n2yHencex2y2+xy1=−n2yThereforethecorrectoptionisOPTION3