If cos−1(x2−y2x2+y2)=loga then dydx =
cos−1(1−y2/x21+y2/x2)=loga
⇒2tan−1yx=loga⇒tan−1yx=loga2
⇒yx=tan(loga2)
Now differentiating both sides, we get
xdydx−yx2=0⇒dydx=yx