If cos2(600+×)−cos2(600−×)∈[−m2,m2],
then m=
Let
f(x)=cos2(60+x)−cos2(60o−x)
=[cos(60+x)+cos(60−x)][cos(60+x)−cos(60−x)]
=(2cos60cosx)(−2sin60sinx)
f(x)=−√32sin2x
Range of f(x)ϵ[−√32,√32]=[−m2,m2]
m=√3
[∵cosu+cosv=2cos(u+v2)cos(u−v2),cosu−cosv=−2sin(u+v2)sin(u−v2)]