If cosα=1213 and sinβ=45 then find sin(α+β).
If cosα=1213
Then, adjacent side of the right angled triangle
containing angle α=12 and hypotenuse =15
Using pythagoras theorem, we get the opposite side
=5
Now we have, sinα=OppositeHypotenuse=513
If sinβ=45
Then, opposite side of the right angled triangle
containing angle β=4 and hypotenuse =5
Using pythagoras theorem, we get the adjacent side
=3
Now we have, cosβ=AdjacentHypotenuse=35
We know that sin(A+B)=sinAcosB+cosAsinB
sin(α+β)=sinαcosβ+cosαsinβ=513×35+1213×45=1565+4865=6365