If cosα=3cosβ−13−cosβ where 0<β<α<π, then the value of tanα2tanβ2=
1−tan2α21+tan2α2−3⎛⎜ ⎜ ⎜⎝1−tan2β21+tan2β2⎞⎟ ⎟ ⎟⎠−13−⎛⎜ ⎜ ⎜⎝1−tan2β21+tan2β2⎞⎟ ⎟ ⎟⎠=1−2tan2β21+2tan2β2 ∴tan2α2=2tan2β2⇒tanα2=√2tanβ2∴0<β<α<π