wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cot1(1+sinx+1sinx1+sinx1sinx)=ax, xϵ(0,π4).
Find the value of a.

A
a=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
a=12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
a=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
a=2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B a=12
Consider 1+sinx+1sinx1+sinx1sinx

=(1+sinx+1sinx)2(1+sinx)2(1sinx)2 (by rationalizing)

=(1+sinx)+(1sinx)+2(1+sinx)(1sinx)1+sinx1+sinx

=2(1+1sin2x)2sinx

=1+cosxsinx

=2cos2x22sinx2cosx2 =cotx2
So, cot1(1+sinx+1sinx1+sinx1sinx)=cot1(cotx2)=x2

Also, x2=ax ...Given
Hence, a=12

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon