If cot(α−β2),cotγ,cot(α+β2) from G.P. for all permissible values of α,β,γ then cosα in terms of the trigonometric ratios of β and γ can be expressed as
A
cosβsin2γ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
cosβcos2γ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
cos2βcosγ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
sinβsin2γ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ccosβcos2γ Given cot2γ=cotα+β2.cotα−β2 ⇒cos2γsin2γ=cosα+β2.cosα−β2sinα+β2.sinα−β2 Applying componendo and dividendo 1cos2γ−sin2γ=cosα+β2.cosα−β2+sinα+β2.sinα−β2cosα+β2.cosα−β2−sinα+β2.sinα−β2 ⇒1cos2γ=cosβcosα ∴cosα=cosβ.cos2γ Option B is correct.