The correct options are
A a=0
B b=0
C c=0
D d=144
Differentiate both the sides with respect to x
Δ′(x)=∣∣
∣∣2x−52x−536x+16x+1914x−614x−621∣∣
∣∣+∣∣
∣
∣∣x2−5x+3233x2+x+4697x2−6x+91421∣∣
∣
∣∣
=0+0=0
⇒Δ(x) is a constant
Thus, a=0,b=0 & c=0
For value of d , putting x=0
Δ(0)=∣∣
∣
∣∣02−5.0+32.0−533.02+0+46.0+197.02−6.0+914.0−621∣∣
∣
∣∣=a.03+b.02+c.0+d⇒d=144